Increased Nonconducted P-Wave Arrhythmias after a Single Oil Fly Ash Inhalation Exposure in Hypertensive Rats

نویسندگان

  • Aimen K. Farraj
  • Najwa Haykal-Coates
  • Darrell W. Winsett
  • Mehdi S. Hazari
  • Alex P. Carll
  • William H. Rowan
  • Allen D. Ledbetter
  • Wayne E. Cascio
  • Daniel L. Costa
چکیده

BACKGROUND Exposure to combustion-derived fine particulate matter (PM) is associated with increased cardiovascular morbidity and mortality especially in individuals with cardiovascular disease, including hypertension. PM inhalation causes several adverse changes in cardiac function that are reflected in the electrocardiogram (ECG), including altered cardiac rhythm, myocardial ischemia, and reduced heart rate variability (HRV). The sensitivity and reliability of ECG-derived parameters as indicators of the cardiovascular toxicity of PM in rats are unclear. OBJECTIVE We hypothesized that spontaneously hypertensive (SH) rats are more susceptible to the development of PM-induced arrhythmia, altered ECG morphology, and reduced HRV than are Wistar Kyoto (WKY) rats, a related strain with normal blood pressure. METHODS We exposed rats once by nose-only inhalation for 4 hr to residual oil fly ash (ROFA), an emission source particle rich in transition metals, or to air and then sacrificed them 1 or 48 hr later. RESULTS ROFA-exposed SH rats developed non-conducted P-wave arrhythmias but no changes in ECG morphology or HRV. We found no ECG effects in ROFA-exposed WKY rats. ROFA-exposed SH rats also had greater pulmonary injury, neutrophil infiltration, and serum C-reactive protein than did ROFA-exposed WKY rats. CONCLUSIONS These results suggest that cardiac arrhythmias may be an early sensitive indicator of the propensity for PM inhalation to modify cardiovascular function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divalent metal transporter-1 decreases metal-related injury in the lung.

Exposure to airborne particulates makes the detoxification of metals a continuous challenge for the lungs. Based on the fate of iron in airway epithelial cells, we postulated that divalent metal transporter-1 (DMT1) participates in detoxification of metal associated with air pollution particles. Homozygous Belgrade rats, which are functionally deficient in DMT1, exhibited diminished metal trans...

متن کامل

A Functional Data Analysis Approach for Evaluating Temporal Physiologic Responses to Particulate Matter

As computer technology has advanced in the last ten years, the ability to acquire copious amounts of physiological data has become much easier. Our laboratory regularly uses radiotelemetry methodology in rodents to acquire nonstop heart rate (HR) and core temperature (Tco) data while animals are exposed to exogenous substances, including air pollutants such as ozone and particulate matter. Brad...

متن کامل

Metal-dependent expression of ferritin and lactoferrin by respiratory epithelial cells.

Increased availability of catalytically active metal has been associated with an oxidative injury. The sequestration of transition metals within intracellular ferritin confers an antioxidant function to this protein. Such storage by ferritin requires that the metal be transported across a cell membrane. We tested the hypothesis that, in response to in vitro exposures to catalytically active met...

متن کامل

Oil fly ash-induced elevation of plasma fibrinogen levels in rats.

Particulate matter air pollution (PM) has been associated with morbidity and mortality from ischemic heart disease and stroke in humans. It has been hypothesized that alveolar inflammation, resulting from exposure to PM, may induce a state of blood hypercoagulability, triggering cardiovascular events in susceptible individuals. Previous studies in our laboratory have demonstrated acute lung inj...

متن کامل

Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation.

In vitro studies suggest that reactive oxygen species contribute to the cardiopulmonary toxicity of particulate air pollution. To evaluate the ability of particulate air pollution to promote oxidative stress and tissue damage in vivo, we studied a rat model of short-term exposure to concentrated ambient particles (CAPs). We exposed adult Sprague-Dawley rats to either CAPs aerosols (group 1; ave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2009